DISPLIB 2025
Train dispatching competition

Effective management of dense railway traffic using algorithms has proven to be very hard.
The DISPLIB competition challenges you to advance the state-of-the-art in real-time train
dispatching and contribute to more environmentally friendly transportation!

This document describes the DISPLIB competition (Sec. 1) and the formal problem definition
with the associated file format (Sec. 2).

Any updates to this document will be published on the DISPLIB web page. On the web page
you will also find the problem instance files and a Python solution verification program.

Changelog
* 2024-09-06: First version published on web page.

Contents
1 The DISPLIB 2025 Competition 2
L1 Spirit e 2
1.2 Generalrules e 2
1.3 Timeline e e e 2
1.4 Scoring of submissions L s 3
1.5 Submission instructions 4
1.6 Winners and finalists 4
2 DISPLIB file format 4
2.1 Conceptualmodel 4
2.1.1 Objective 6
2.2 JSONformat e e 6
221 Trains e e e e e e e e e e 6
222 Objective e e e e e e e 7
223 Solutionformat 7
23 Anexampleproblem Lo Lo 8
3 Acknowledgements 9

https://displib.github.io/

1 The DISPLIB 2025 Competition
1.1 Spirit

The DISPLIB competition on train dispatching aims to encourage research into algorithms
for optimized train dispatching that are suitable for real-time usage and for integration into
in a real-world train dispatching system. We encourage submission of algorithmic ideas
that have not been carefully implemented or fine-tuned for real-time usage by focusing on
solution quality and instance coverage.

All the instances on which the algorithms will be evaluated are extracted from real-world
railway information systems from different countries around the world. Instances with a
wide range of characteristics will be used, including passenger-dominated versus freight-
dominated railways, and coarse-grained infrastructure (stations and lines) versus fine-grained
infrastructure (signals in station areas).

1.2 General rules

* Any programming language and computer may be used to solve the problem instances.
The use of existing general-purpose optimization software is allowed (including com-
mercial solvers such as CPLEX, Gurobi, Xpress, etc.).

 Offline tuning or learning phases of the algorithm are allowed, and do not count against
the time limit for computing the solution. However, adaptation to specific problem
instances are not allowed.

* The code is not expected to be delivered to be run by the organizers. However, in order
to be considered as a finalist, competitors may be required to show source code to the
organizers. This is simply to check that they have followed the rules and the spirit of
the competition, and will be treated in the strictest confidence.

 All reported results must be computed using no more than 8 CPU threads and 16 GB
of RAM with a time limit of 10 minutes per instance.

* Problem instances and solutions will be given in the JSON formats described in Sec. 2.
A solution will be considered feasible if the provided Python program for solution
verification reports it to be feasible, and the objective value used to evaluate the
submission’s quality will be the one reported by the program. We have done our best
for the verification program to adhere to the problem instance specification in Sec. 2.
However, if any bugs are discovered in the verification program, the program may
be modified and the new program announced on the DISPLIB web page during the
competition. Deliberate exploitation of bugs in this program is not allowed, and such
bugs should be reported to the competition organizers.

1.3 Timeline
The problem instances will be released in two phases:

* Phase 1: the first phase will contain a set of varied and challenging problem instances
based on real-world use cases. The early phase instances will be publised on the
DISPLIB web page on 1st October 2024. We encourage all participants to submit
solutions to phase 1 instances as early as possible to become listed on a Phase 1
scoreboard on the web page. Submitting the Phase 1 solutions before the final

competition deadline is optional but strongly encouraged as it will provide feedback
on the progress of the competition as well as a chance to be selected as a finalist.
— Early submissions (to appear in the Phase 1 scoreboard) must be made at the
latest on 31st January 2025 (AoE).

» Phase 2: second phase of the competition will contain larger and more challenging
problem instances based on real-world use cases. The late phase instances will be
published on the DISPLIB web page on 3rd February 2025. A final scoreboard for
the competition will be published on the web page after the announcement has been
made at ODS 2025. Note that the scores for the final submission will be computed
independently of the early submissions, and it is possible to achieve the highest score
in the final scoreboard without having submitted anything for the early deadline.

— Final competition deadline for submissions of solutions to instances from both
phases must be made at the latest on 30th April 2025 (AoE).

Please also watch the web page for amendments of the rules, instances, and the verification
program. Such amendments will only be made when absolutely necessary to achieve a fair
competition based on realistic problem instances in the spirit described in Sec. 1.1.

1.4 Scoring of submissions

Points are awarded to each solution based on the position among its competitors and the
phase (phase 2 instances are given more points). The top competitors will score points
according to the scale in Table 1 for each instance in each phase. When there are two or
more solutions tied for the same positions, the points granted by these positions are split
evenly between competitors (rounded up in case of fractional points). When a team does not
provide any solution for an instance, it is awarded zero points for that instance.

The ordering of all competitors will be based on the sum of points for all instances from both
phases. The winner of the competition will be the solver with the highest total number of
points. In the event of any ties for a position, the competitor with superior results (based on
descending order of lexicographic ordering of points awarded) will gain precedence.

Table 1: Points awarded for an instance.

Position Phase1 Phase?2

Ist 10 15
2nd 7 11
3rd 5 8
4th 3 6
5th 2 4
6th 1 3
7th 2
8th 1

1.5 Submission instructions

Everyone is welcome to participate! Collaboration in teams of any size is encouraged. The
submission should consist of the following:

* A short report describing the algorithm. The report should be maximum 6 pages in
Springer LNCS format.
* A zip file containing at most one solution per problem instance.

The submission should be sent to the competition organizers within the deadline using the
following email address: displib2025competition @ gmail.com

1.6 Winners and finalists

2-4 of the top teams will be selected as finalists after evaluation following the last submission
deadline. Finalists will be invited to present their algorithms at the International Conference
on Optimization and Decision Science (ODS) 2025. The selection of finalists will be based
on the points used to compute the scoreboards (see Sec. 1.4) but one of the finalist slots may
also be awarded to a highly original and promising algorithmic idea that was not among the
top scorers. Also, one finalist slot will be awarded to the winner of the phase 1 scoreboard.

Also at ODS 2025, the organizers will present a summary of results of the competition and
the ranking of the teams, including which team is the winner, will be announced. Final
results and rankings for all teams will be published on the DISPLIB web page after ODS
2025.

2 DISPLIB file format

Given a set of trains traveling on a railway, the Train Dispatching Problem is the operational
problem that occurs when some trains have become delayed with respect to their prescribed
timetable, and we want to make routing and scheduling adjustments to minimize the total
delay on the railway.

The DISPLIB problem format is a conceptual model and a JSON format for describing
instances of the train dispatching problem. The format is designed to be as simple as possible
while still being capable of capturing a wide range of real-world dispatching problems.

2.1 Conceptual model

Conceptually, the format describes a set of trains and an objective. Each train consists of a
directed acyclic graph of operations, called the operations graph. This graph has exactly
one node that has no incoming edges, called the entry operation, and exactly one node
that has no outgoing edges, called the exit operation. Each operation has the following
properties associated with it:

* A minimum duration, i.e., the shortest allowable time from the start of the operation to
the end of the operation. The minimum duration may be zero time units.

* Lower and upper bounds on when the operation may start.

* A set of resources that need to be exclusively allocated to the train to perform the
operation. Each resource used by the operation also has a release time, which is an

mailto:displib2025competition@gmail.com

additional duration that the operation occupies the resource after the operation has
ended. The release time may be zero time units.

Resources may represent anything that can only be used by one train at a time, but typically
represent physical sections of the railway track that cannot be shared with other trains
according to safety regulations. Note that the set of all relevant resources for the whole
problem is given only implicitly, as the union of the sets resources referred to by operations.

opl,§=0 op6,6§ =0
res.: [r1,72] res.: [re] exit op.
entry op. /

— op3,6:5/ op7,6=0
op 0,8 =5 t>5 t <10
res.: [r1] \ res.: [ra) \ res.: ||

op2,6=0 op5,§6=0
res.: [r1,73] res.: [rs]

Figure 1: A train operation graph. The boxes represent operations, labeled with a minimum
duration 9, and a list of resources r1, 2, . .. to which it needs exclusive access. The green
node labeled "op 0" is the entry operation (it has no incoming edges), and the red node
labeled "op 7" is the exit operation (it has no outgoing edges). The operations "op 3" and "op
7" have lower and upper bounds, respectively, defined on their start time ¢.

A solution to the problem consists of an ordered sequence of operation start events across
all trains. Each start event specifies the start time of the corresponding operation. From this
global sequence of events, we can extract the subsequence of events for each specific train.
In the train’s subsequence, any start event (except the first event) is also the end event of
the train’s previous operation. All time and duration values must be given as non-negative
integers. This solution sequence is feasible if:

» The sequence of events is given in chronological order, i.e., the time of each event is
greater than or equal to the time of all preceding events.
* The subsequence of operations applying to each train forms a path through that train’s
operations graph, starting at the entry operation and ending at the exit operation.
* The time value of each start event satisfies the lower and upper bounds on the start
time of the operation.
* The duration from each start event to the corresponding end event must be greater than
or equal to the minimum duration of the corresponding operation.
* For any pair of operations o; and o2, where:
— the start event of 01 precedes the start event of 0- in the global sequence, and
— 03 and o5 belong to different trains, and
— 01 and 02 use a common resource 7,
the following must hold:
— the end event for o1 precedes the start event for 05 in the global sequence, and
— the duration from the end event of 0; to the start event of 0- is greater than or
equal to the release time of resource 7 in 0.
Note that this implies that the global ordering of events is important beyond just the
time values. A resource may be released by one train and allocated by another train
at the same time value, but this is only feasible if the end event of the previous usage
occurs before the next usage in the global ordering (see also the example in Sec. 2.3).

Note that the exit operation has no end event, and so any resources occupied by the exit
operation of the train will never be released.

2.1.1 Objective

The objective defines the cost of a solution, and the goal of solving the DISPLIB problem
instances is to find a feasible solution with the minimum cost.

The objective is described as a sum of objective components. Each objective component
describes an operation delay as a threshold time ¢ for when an operation becomes delayed,
and the cost associated with the delay. The cost value v; of an operation delay 7 is:

v =c-max{0,t -t} +d-H(t—1)

where c and d are non-negative constants, ¢ is the start time of the referenced operation,
and H is the Heaviside step function that takes the value O for negative arguments and 1
otherwise. If that operation is not part of the solution, then v; = 0. Note that, typically, either
c or d is zero, but the formula contains both to be able to model both step-wise and linear
functions of delay.

2.2 JSON format

The JSON object for a DISPLIB problem instance contains two keys: trains and

objective, giving the following overall structure of the JSON file, where ... is a

placeholder:

{ "trains": [[{ ... operation ... }, ... 1, ... 1,
"objective": [{ ... component ... }, ...] }

2.2.1 Trains

The top-level t rains key contains a list of trains, where each train is a list of operations.
References to specific trains are given as a zero-based index into the trains list, and
references to operations are given as a zero-based index into a specific train’s list of operations.
Each operation is a JSON object with the following keys:

* start_1b (optional, number): the earliest start time of the operation. Must be a
non-negative integer. If the key is not present, defaults to 0.

* start_ub (optional, number): the latest start time of the operation. Must be a
non-negative integer. If the key is not present, defaults to infinity (i.e., no upper
bound).

e min_duration (number): the minimum duration, i.e., the minimum time between
the start time and the end time of the operation. Must be a non-negative integer.

* resources (optional, list): a list of resources used by the train while performing the
operation. If the key is not present, defaults to the empty list. Each resource usage is
given as a JSON object with the following keys:

— resource (string): the name of a resource.

— release_time (optional, number): the release time for the resource, i.e., the
minimum duration between the end time of this operation and the start time of
any subsequent operation (of a different train) using the same resource. If the
key is not present, defaults to 0.

* successors (list): a list of alternative successor operations, given as zero-based
indices into the list of this train’s operation. The list must be non-empty unless this
operation is the exit operation.

For example, an operation that starts between time 7 and 8 and has a duration of 5 time units,
uses the resource r1, and releases it immediately after the end event, and must be succeeded
by the operation with index 2, would be formatted as follows:

{ "start_1b": 7, "start_ub": 8, "min_duration": 5,
"resources": [{ "resource": "rl" }], "successors": [2] }

For each train, the list of operations is ordered topologically, i.e., all successors for an
operation appear after it in the list. Note that this also means that the entry operation will
always be at index 0, and the exit operation will always be the last operation in the list.

2.2.2 Objective

The top-level objective key contains a list of objective components. Each objective com-
ponent is a JSON object containing the key t ype for determining an objective component
type, and other keys depending on the type. Only one type, called operation delay (see Sec.
2.1), is defined in DISPLIB 2025 (the t ype key is included for forward compatibility).

The operation delay objective component is decribed as a JSON object with the following
keys:

* type (string): must contain the string "op_delay".

* train (number): reference to a train as an index into the top-level t rains list.

* operation (number): reference to an operation as an index into the list defining the
train’s operation graph.

* threshold (number): a time after which this delay component is activated, as
defined in the formula above. If the key is not present, defaults to 0.

* increment (number): the constant d in the formula above. Must be a non-negative
integer. If the key is not present, defaults to 0.

* coeff (number): the constant c in the formula above. Must be a non-negative integer.
If the key is not present, defaults to 0.

For example, an objective component that measures the time that train 0’s operation 5 is
delayed beyond time 10, would be formatted as follows:

{ "type": "op_delay", "train": 0, "operation": 5,
"threshold": 10, "coeff": 1 }

2.2.3 Solution format

Solutions to a DISPLIB problem are given as a JSON object (typically in a separate file from
the problem instance), containing the following keys:

* objective_value (number): is the objective value of the solution (according to
the ob jective from the problem instance).

* events (list): is an ordered list of start events, i.e. a list of references to operations to
be started in the given order. Each start event is described by a JSON object with the
following keys:

— time (number): the time at which to start the operation. Must be a non-negative
integer.

— train (number): reference to a train as an index into the top-level t rains list.

— operation (number): reference to an operation as an index into the list defin-
ing the train’s operation graph.

2.3 An example problem

Let’s consider two trains meeting at a junction, coming from opposite directions. Train A
is currently occupying the left part of the track (resource 1), and may proceed either to the
upper right track (resource r1), which train B is currently occupying, or to the lower right
track (resource r2), which is currently free.

bo
= P
<---- +emp
1 rl
e
r2
The operation graphs for the two trains would look as follows:
Train A oplLo =5
optO,;S z I res.: [rl] ——— op3.0 -0
res.. [1] ——>| op2.5=5 }— res-: [
res.. [r2]
Train B
optO,;SEB - opl,d =5 - op2,6 =0
ey - res.. [1] - res.: ||

The objective is to minimize the time when train B finishes traveling through 1. The JSON
problem instance for this problem is:

{

"trains": [
[{ "start_ub": 0,
"min_duration": 5,
"resources": [{ "resource": "1" }],
"successors": [1, 2] 1},
{ "min_duration": 5,
"successors": [3],
"resources": [{ "resource": "rl" 1}1},
{ "min_duration": 5,
"successors": [3],
"resources": [{ "resource": "r2" }]1},

{ "min_duration": 5,
"successors": []11}1],
[{ "start_ub": O,
"min_duration": 5,
"resources": [{ "resource": "rl" }],
"successors": [1]},
{ "min_duration": 5,
"resources": [{ "resource": "1" }],
"successors": [2]},
{ "min_duration": 5,
"successors": [1}11,
"objective": [{ "type": "op_delay",
"train": 1,
"operation": 2,
"coeff": 1}]
}

The following JSON object is a feasible (and optimal) solution to the problem instance:

{ "objective_value": 10, "events": [
{"time": 0, "train": 0, "operation": 0},
{"time": 0, "train": 1, "operation": 0},
{"time": 5, "train": 0, "operation": 2},
{"time": 5, "train": 1, "operation": 1},
{"time": 10, "train": 1, "operation": 2},
{"time": 10, "train": 0, "operation": 3}] }

Note that this is an example where the global ordering of events is important beyond the
ordering implied by the time values: if we switch the ordering of the two events at time 5,
the result is not a feasible solution since operation 1 of train B allocates 1 while it is still in
use by train A.

3 Acknowledgements
The competition is organized by Bjgrnar Luteberget, Giorgio Sartor, Oddvar Kloster, and

Carlo Mannino.

Thanks to SINTEF Digital, Siemens Mobility, and SBB (data.sbb.ch) for providing/publishing
raw data for the problem instances.

Thanks to SINTEF Digital for providing funding for the efforts involved in creating this
competition.

Thanks to the organizers of the International Conference on Optimization and Decision
Science (ODS) for supporting and publicizing the competition.

https://data.sbb.ch/

	The DISPLIB 2025 Competition
	Spirit
	General rules
	Timeline
	Scoring of submissions
	Submission instructions
	Winners and finalists

	DISPLIB file format
	Conceptual model
	Objective

	JSON format
	Trains
	Objective
	Solution format

	An example problem

	Acknowledgements

